主页:https://www.phys.tsinghua.edu.cn/

就业主管联系方式:  627833821  luanluan@mail.tsinghua.edu.cn

 

 物理系基本概况

  清华大学物理系是目前国内发展最快、最好的物理系之一,为提高清华大学的学术声誉起着重要作用。物理系的教师在凝聚态物理、原子分子和光物理、粒子物理、核物理、天体物理以及生物物理等多个学科方向从事科学研究工作。


物理系现有教师95名,研究生393名,本科生331名。教师中有中国科学院院士9人(王崇愚、陈难先、顾秉林、邝宇平、李家明、范守善、朱邦芬、薛其坤、段文晖)。物理系的主要研究机构包括凝聚态物理、粒子物理核物理天体物理、原子分子与光物理3个研究所,低维量子物理国家重点实验室、量子信息前沿科学中心、清华大学原子分子纳米科学研究中心、清华大学量子科学与技术研究中心、清华-富士康纳米科技研究中心、清华大学-泸州老窖智能检测联合研究中心、清华大学(物理系)-天宇鸿图应用技术研究院(重庆)有限公司量子加密技术联合研究中心等。


物理系为物理学和天文学两个一级学科的研究生和本科生提供优越的科研条件,并开设各类普及性和专门化物理学课程。


  师资力量

物理系现有在职教职工131人,其中教师93人,含教授(研究员)47人、副教授(副研究员)40人。

中科院院士:

 李家明 王崇愚 陈难先 顾秉林 范守善

邝宇平 朱邦芬 薛其坤 段文晖

 

  本科生培养

物理系十分重视基础性人才的培养,关心志在从事基础研究的学生,在配备导师、因材施教、提高奖学金比例等方面给予政策上的倾斜。学分制和分流培养的办法使每个学生都有条件得到自主发展。本科毕业生选择继续深造的比例在95%左右,近年来有多位同学获得到哈佛大学、斯坦福大学、麻省理工学院、普林斯顿大学、加州大学伯克利分校、加州理工学院等世界顶尖大学攻读研究生的机会。本科毕业后直接参加工作的同学则广泛分布于教育、科研、工业、金融、行政管理等行业。


研究生培养

物理系研究生培养以博士生为主,在凝聚态物理、原子分子与光物理、粒子物理、核物理、天体物理、声学、生物物理、量子信息等学科的导师指导下从事研究工作。每年毕业约5名硕士,60名博士,硕士约50%继续到国外知名大学深造,博士生约30%到国内外知名大学或研究机构从事博士后研究,其余就业于高校、研究所、军工企事业等单位。就业的学生中到重点单位(重点高校、重要科研机构、政府管理部门和国内外知名企业)的占70%,重点单位中高校和科研单位所占比例为50%

专业介绍:

本科专业:

○ 物理学

本专业的目标是培养两类人才:一类是物理学基础型人才,他们有扎实的数理基础知识,创造意识和动手能力强,对探索自然奥秘有浓厚兴趣,并愿意献身于基础科学研究与教学;另一类是物理学应用型人才,他们不但具有扎实的数理基础知识、较强的动手能力,而且既能够从技术应用中提炼出物理问题,又善于将现代物理成果应用到技术发展中去。物理系所培养的学生还都应具有健全的人格、良好的人文修养,国际化视野和批判精神,具备在物理学科和其它对物理基础要求较高的相关学科进一步深造的良好基础和潜能。

○ 数理基础科学专业

数理基础科学专业的培养目标是:为基础科学培养富有创新意识和具有国际竞争能力的优秀人才;也为与数学、物理学密切相关的其它学科(信息、经管、材料、生命等)培养具有开拓精神和良好理科素养的新型人才。

基科班的培养特色:强调同时强化数学和物理基础;让学生较早参加科研实践训练,从三年级开始,学生可以根据本人的志趣选择学科方向,进入导师的课题组进行科研实践训练;将本科与研究生培养过程有机衔接,学生经过多次选择,找到适合自己发展的学科方向。

研究生专业:

○ 凝聚态物理

凝聚态物理是一个高度多元化的研究领域,不仅涵盖了超导体、磁性材料和半导体等相对传统的研究方向,也包含一些新兴的前沿研究方向,如拓扑物理、界面超导、量子反常霍尔效应,还包含了各种复杂凝聚体系的研究,如新型生物与能源材料

计算和理论凝聚态物理从微观原子尺度出发,根据材料的元素构成和原子结构预测其性质、解释内在的物理机制。具体研究内容包括:新型拓扑材料和新奇拓扑量子物态的探索;低维结构中的量子效应;电子关联效应和超导机理;低维材料生长动力学;量子材料的理论设计、模拟及器件原理的研究;半导体材料中的电子态和自旋态;结构和功能材料的电子结构和性能预测;多层次-跨尺度物性关联的物理机制及算法与材料设计;基于大数据方法的材料基因工程研究。

实验凝聚态物理的研究组主要关注材料中电子的集体激发行为与新奇演生物理效应(比如量子霍尔效应、量子反常霍尔效应、超导性和低温物理),原子和分子层次的精确测量和可控生长,以及新奇量子材料的物理性质和应用等,高质量材料制备和高分辨物性表征,超导、铁磁、铁电、拓扑等新奇量子效应探测。主要的研究方向包括:低维材料与结构的可控制备方法、生长机理和新奇量子现象研究,拓扑量子物态与拓扑材料,强关联体系与新型超导体研究,高温超导材料及其应用,碳基纳米材料的物理和应用,纳米电子学和光电子学原理和器件探索;分子束外延生长,极低温强磁场扫描隧道显微学,角分辨光电子能谱,功能氧化物磁性薄膜、薄膜复合结构及纳米磁性材料的制备、物性及器件应用;二维范德瓦尔斯材料与异质结构,超导电子学和能源材料研究等。


 原子分子与光物理

原子分子与光物理覆盖了原子分子与光物理的基本研究和光与物质相互作用的研究。原子分子与光物理研究强调实验与理论紧密结合,主要研究方向包括:原子分子及团簇理论;原子分子高激发态光谱、动力学及相干控制;冷原子物理及原子光学与原子玻色-爱因斯坦凝聚;原子分子离子超灵敏谱学及应用;纳米结构和纳米光学;特异材料及其量子相干控制;全固化激光器物理及应用;物理量的精密测量;实用化量子保密通信和基于原子分子与光子的量子模拟。


 粒子物理

粒子物理主要研究物质最深层次的结构、最基本的相互作用和运动规律、时空的性质及宇宙起源等问题。目前物理系的粒子物理学科把主要目标放在TeV物理理论及现象学研究上,建设了一支由学科带头人-学术骨干-博士研究生组成的学术梯队,在粒子物理理论和粒子物理实验研究方向都做出了有国际影响的工作。具体研究内容包括:电弱对称破缺机制及超出标准模型的新物理的理论和唯象研究,包括Higgs粒子、中微子、暗物质、各种新规范粒子及其可能的相互作用;粒子物理与宇宙学和引力理论的交叉;重夸克偶素的强子跃迁和强衰变的理论研究等;第一原理研究束缚态粒子的有效拉氏量;非微扰理论、强子物理等。


○ 核物理

物理系的核物理研究涵盖核与核子结构、相对论重离子碰撞与强相互作用体系、核反应等领域,是国内研究原子核物理的主要单位之一,核物理专业也是国家重点学科。

理论工作覆盖了从低能的原子核结构到相对论性重离子碰撞大能量范围内的诸多领域:在重离子碰撞的动力学模拟、等时量子输运理论、量子色动力学(QCD)相变理论、QCD凝聚态物质、相对论重离子碰撞中的重味探针等领域做出了重要的原创性成果;利用数学物理来理解量子系统的对称性,探索群和代数(李代数、李超代数、无限维李代数、变形李代数等)的表示论在物理学中的应用,如原子、分子结构和核结构的代数模型;利用Monte Carlo 模拟方法从事探测器、核电子学、量子化学等方面的研究。

在重离子核反应实验和唯象研究领域,研究人员通过中能重离子核反应实验研究揭示了一系列同位旋动力学的新现象,首次预言氘核的同位旋量级化效应,发现重离子核反应中同位旋衣依赖的粒子发射次序,揭示了同位旋漂移过程的长时标特征,成功提取对称能密度依赖参数。广泛深入参与国际合作。组织和推动基于国家大科学工程的探测器模拟和预研。在燃耗测量技术方面取得原创性的成果。在强子物理领域,进行自旋相关相互作用的标准模型之上新物理的探寻并取得重要成果。在核结构领域,系统研究了一系列原子核的高自旋态,观察到核集体运动中的对称性破缺、奇异形变和形状驱动小型等一系列新现象。


 天体物理

物理系天体方向目前的研究方向包括时域天文学、磁流体天体物理、恒星物理、核天体物理、宇宙学以及引力波天体物理等方向。依托物理系、天文系的教师队伍,建立了较为完备的课程体系和研究生培养方案。物理系培养的天体方向的本科生及研究生有多人成为有国际影响力的年轻学者,获得美国斯隆奖、哈勃学者、爱因斯坦学者等荣誉。针对国际天体物理的前沿热点问题及国内天文学科发展现状,清华大学物理系未来将重点发展2个热点研究方向,以地面光学及空间紫外大视场巡天驱动的新兴天文学方向时域天文学、以引力波探测新技术牵引的引力波天文学。 此外,在理论天体物理如磁流体天体物理学、宇宙学以及核天体物理等交叉方向也适当布局。


○ 生物物理

目前物理系生物物理方向的研究领域主要集中于生物医学的光学成像和探测相关的研究。具体包括:(1)基于光散射的无损成像方法及其应用研究。如:偏振光散射理论、方法和 应用;(2)单分子探测及应用研究。如:单分子层次上生物大分子之间相互作用的动力学过程,染色体域空间构象的三维荧光原位杂交研究等;(3)无损或微创的多维、微区、高灵敏探测及光学成像的新原理和方法及其在生物医学中的应用。如:高速高分辨光学相干层析成像、超分辨新原理及方法、医学内窥成像技术、生物信息的高速光计算实验研究等。


 量子信息

量子信息技术是未来信息技术和信息产业革命性变革的核心推动力,将对整个信息产业产生重大影响。量子信息科学的突破是量子信息技术发展和应用的关键。当前,量子信息科技已进入到一个深化发展、快速突破的阶段,呈现出重大产业革命的先兆。 清华大学物理系是世界上最早开展量子信息研究的单位之一,研究领域涉及量子物态与材料、量子计算与通信、量子精密测量、量子器件等多个方面。近年来清华大学加快了量子信息学科布局,加大引进优秀青年人才的力度,进一步提升了我国量子信息科学研究的能力,例如清华大学物理系近期从微软Station Q研究所及荷兰代尔夫特理工大学引进了青年科学家刘东和张浩,大大加强了在拓扑量子比特器件制备方面的实力。清华大学龙桂鲁在2000年提出了量子安全直接通信(量子直通)理论,是国际上量子保密通信的三个最主要理论之一,近年发展迅速。


Undergraduate Students

 Physics

The department places strong emphasis upon students obtaining a sound background in basic mathematics and suitable foreign language skills, as well as significant experience with experimental techniques. Upon graduation, students will have mastered fundamental theories and research methods in physics, preparing them for a wide range of possible future careers, including research scientist, physics teacher, technical manager, and other positions in business, government, and industry calling for physics expertise. 



Graduate Students

Condensed Matter Physics

Condensed matter physics at Tsinghua covers a broad range of theoretical and experimental subjects that are of key importance to the development of fundamental science and practical applications. The research activities include most central topics of condensed matter physics: quantum anomalous Hall effect, topological physics, high temperature superconductivity, strongly correlated electronic materials, spintronics, low-dimensional quantum materials/devices, nano physics and applications, etc. Pioneering research works are conducted by developing state-of-the-art experimental techniques (nanoscale, ultrafast, high resolution probes) and theoretical approaches (quantum many-body physics, first-principles methods, electronic structure theory).



Atomic, Molecular, and Optical (AMO) Physics

Research in AMO physics encompasses the studies of fundamental atomic and molecular physics, of optical science, the applications of AMO sciences, and of the interactions between atoms, molecules and photons. This discipline is authorized to confer master’s and doctor’s degrees both in atomic and molecular physics and in optics, of which the atomic and molecular physics major is certified as a national key discipline since 2001. In recent years, with the successful expansion into research fields such as cold atoms and molecules, laser cooling and trapping of atoms and molecules as well as ions, atomic clocks, quantum simulation, quantum information processing, and quantum precision measurement, AMO research at Tsinghua Physics is experiencing unprecedented opportunities.

Particle Physics

Now particle physics in the Department focuses on phenomenology and experiment of TeV physics, which includes mechanism of electroweak symmetry breaking, theory, experiment and phenomenology of new physics beyond the standard model, such as higgs, neutrino, dark matter, various new particles and their interactions, etc. We have five young faculty members two participate in LHC Atlas and CMS experiments, one participates Xenon experiment, and the other are two particle theorists doing research on cosmology, collider phenomenology and dark matter. We also study chiral Lagrangian of bound state particles from first principles, non-perturbative quantum field theories and hadron physics, etc.

Nuclear Physics

The nuclear physics research of the Department of Physics covers nuclear and nuclear structures, relativistic heavy ion collisions and strong interaction systems, nuclear reactions and other fields. It is one of the main units of nuclear physics research in China, and the nuclear physics major is also a national key discipline.

Theoretical work covers from low-energy nuclear structure to relativistic heavy ion collisions over a wide range of energy field: when the dynamics of heavy ion collision simulation, such as quantum transport theory and the quantum color dynamics (QCD) phase transformation theory, the QCD heavy flavor of condensed matter, relativistic heavy ion collision probe, and other fields has made the important original achievements; Use mathematical physics to understand the symmetry of quantum systems, explore the application of representation theory of groups and algebras (Lie algebras, Lie hyperalgebras, infinite dimensional Lie algebras, deformed Lie algebras, etc.) in physics, such as algebraic models of atomic, molecular and nuclear structures; Monte Carlo simulation method is used to study detector, nuclear physics, quantum chemistry and so on.

In the field of heavy ion reaction experiment and phenomenological research, the researchers through the main reaction experiment research reveals a series with a twisted mechanics is a new phenomenon, for the first time to predict the deuteron isospin scale effect, found that heavy ion reaction of garment of isospin dependent on the particle emission of order, reveals the isospin drift long time scale characteristics of the process, Symmetry energy density dependent parameters were extracted successfully. Extensive and in-depth participation in international cooperation. To organize and promote the simulation and pre-research of detectors based on national science projects. Achieved original results in burnup measurement techniques. In the field of hadronic physics, new physics based on the standard model of spin-dependent interactions have been explored and important achievements have been made. In the field of nuclear structure, a series of high-spin states of nuclei have been systematically studied, and a series of new phenomena such as symmetry breaking, singular deformation and shape-driven miniaturization have been observed.


Astrophysics

Astronomy is one of the six basic natural sciences, having close connections with physics, mathematics, chemistry, geology, biology and engineering science.  To accelerate development of astronomy, Tsinghua University established the Tsinghua Center for Astrophysics (THCA)in 2001, attached to Physics Department. Over the past 20 years, the THCA gained great progress in the research of astronomy and student training. The graduates from physics department won the Sloan Prize, Hubble fellowship, and Einstein fellowship etc. and some have become distinct scholars of  astronomy.

On Mar. 28 2019, the astronomy department was formally established, and the discipline development of astronomy in Tsinghua University entered a new era. As the founding unit, physics department will keep development and student training in some distinctive astronomical directions that are closely crossed with physics, including time-domain astronomy, stellar astrophysics, nuclear astrophysics, cosmology and gravitational astronomy etc.

Biophysics

Biophysics is an interdisciplinary subject combining physics and biology, and an important branch of life science and physics. With the concept and method of physics, biophysics is to study the structure and function related characteristics of the process of life activities in terms of matter, energy and information exchanges with high temporal and spatial resolution. This discipline is closely related to the study of macromolecules in soft matter condensates, molecular biology of the physical and chemical processes inside and outside the cell, and the complex system theory of multi-component interactions with highly inhomogeneous nonlinearity. It also has important applications in clinical medicine. At present, the research field of biophysics in the department of physics mainly focuses on the research related to optical imaging and detection in biomedical application. Specifically, it includes: (1) non-destructive imaging method based on light scattering and its application research. For example: polarized light scattering theory, method and application; (2) single molecule detection and application research. For example, the kinetic process of interaction between biomolecules at the single molecular level, the study of three-dimensional fluorescence in situ hybridization of spatial conformation in chromosome domain, etc. (3) new principles and methods of non-invasive or minimally invasive multidimensional, micro-area, highly sensitive detection and optical imaging and their applications in biomedicine. For example: high speed and high resolution optical coherence tomography, new super-resolution principles and methods, medical endoscopy imaging technology, high speed optical computation of biological information, etc.

Quantum Information

Quantum information technology is the dominant force to push forward the development and revolution of future information technology and industry. It will influence the whole information industry. Breakthroughs in quantum information science are the key to the development and application of quantum information technology. Currently, quantum information science and technology has entered a new era of profound development and rapid breakthroughs. The sign of a major industrial revolution is emerging. Department of Physics of Tsinghua University is one of the pioneers in quantum information studies in the world, and the department’s research covers areas such as quantum matter and material, quantum computing and communication, quantum metrology and quantum devices and so on. In recent years, the University has strengthened the discipline of quantum information science, and speeded up the recruitment of young talent faculties, so as to enhance China’s research and development capability in quantum information science. For instance, two outstanding young faculty members, Dr Dong Liu from Microsoft Station-Q and Dr. Hao Zhang from Delft University of Science and Technology, have joined the department of physics recently. This has significantly strengthened the fabrication and control capabilities of topological qubit of the department. Gui-Lu Long proposed quantum secure direct communication(QSDC) theory in 2000, which has become one of the three major theories of quantum secure communication. In the last few years, QSDC is developing fast.


新闻热点